

### Solid State Devices, Inc.

14701 Firestone Blvd \* La Mirada, CA 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com

### **Designer's Data Sheet**

## Part Number/Ordering Information <sup>1/</sup>

1N802

L Screening <sup>2/</sup>
\_\_ = Not Screened

TX = TX Level
TXV = TXV Level

S = S Level

Package Type

\_ = Axial Leaded

SMS = Surface Mount Square Tab

Device Type (VRWM)

1 = 100 V

2 = 150 V

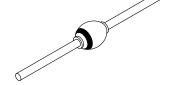
3 = 200 V

## 1N8021 thru 1N8023 SERIES

1 AMP 100 - 200 VOLTS 5 nsec HYPER FAST RECOVERY RECTIFIER

#### **FEATURES:**

- Hyper fast reverse recovery time: 5 ns Max
- · Low forward voltage drop
- Low reverse leakage current
- Avalanche breakdown
- · Void free ceramic frit glass construction
- · High temperature category I eutectic metallurgical bond
- · Hermetically sealed
- · Solid silver leads
- Excellent liquid-to-liquid cryogenic thermal shock performance
- Available in axial & square tab versions
- For high efficiency applications
- TX, TXV, and S-Level screening available<sup>2/</sup>
- Available as a QPL product per MIL-PRF-19500/770
- Replacement for 1N6638, 1N6642 and 1N5806


| MAXIMUM RATINGS 3/                                                                                                                               |                            |                                        |                   |       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|-------------------|-------|--|
| RATING                                                                                                                                           |                            | SYMBOL                                 | VALUE             | UNIT  |  |
| Peak Repetitive Reverse Voltage<br>DC Blocking Voltage                                                                                           | 1N8021<br>1N8022<br>1N8023 | $oldsymbol{V_{RWM}}{oldsymbol{V_{R}}}$ | 100<br>150<br>200 | Volts |  |
| Average Rectified Forward Current (Resistive load, 60 Hz, sine wave, T <sub>C</sub> = 25°C)                                                      |                            | lo                                     | 1                 | Amp   |  |
| Peak Surge Current (8.3 msec pulse, half sine wave superimposed on Io, allow junction to reach equilibrium between pulses, $T_C = 25^{\circ}C$ ) |                            | I <sub>FSM</sub>                       | 20                | Amps  |  |
| Operating & Storage Temperature                                                                                                                  |                            | $T_{\text{OP}}$ and $T_{\text{STG}}$   | -65 to +175       | °C    |  |
| Thermal Resistance SMS- Junction to End Tab Axial- Junction to Lead @ .375"                                                                      |                            | R <sub>θJE</sub><br>R <sub>θJL</sub>   | 20<br>80          | °C/W  |  |

#### NOTES:

- 1/ For ordering information, price, and availability contact factory.
- $\underline{\textit{2}\textit{I}}$  Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @25°C.

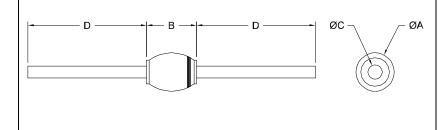


**SMS** 

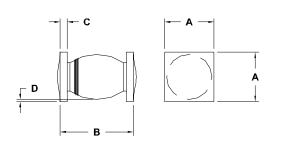







Solid State Devices, Inc.

14701 Firestone Blvd \* La Mirada, CA 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com


# 1N8021 thru 1N8023 **SERIES**

| CHARACTERISTICS                                                                                             |                                                                                                                                                                | SYMBOL                                                                                                         | LIMIT                                              | UNIT |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------|
| Maximum Instantaneous Forward Voltage Drop (Pulsed, $T_A$ = 25°C)                                           | $\bigcirc$ $I_F = 1mA$<br>$\bigcirc$ $I_F = 10mA$<br>$\bigcirc$ $I_F = 100mA$<br>$\bigcirc$ $I_F = 200mA$<br>$\bigcirc$ $I_F = 500mA$<br>$\bigcirc$ $I_F = 1A$ | V <sub>F1</sub><br>V <sub>F2</sub><br>V <sub>F3</sub><br>V <sub>F4</sub><br>V <sub>F5</sub><br>V <sub>F6</sub> | 0.525<br>0.650<br>0.800<br>0.850<br>0.910<br>0.980 | Vdc  |
| Maximum Instantaneous Forward Voltage Drop (Pulsed, T <sub>A</sub> = 150°C)                                 | @ I <sub>F</sub> = 10mA<br>@ I <sub>F</sub> = 100mA                                                                                                            | V <sub>F7</sub><br>V <sub>F8</sub>                                                                             | 0.500<br>0.620                                     | Vdc  |
| Maximum Instantaneous Forward Voltage Drop (Pulsed, T <sub>A</sub> = -55°C)                                 | @ I <sub>F</sub> = 10mA<br>@ I <sub>F</sub> = 100mA                                                                                                            | V <sub>F9</sub><br>V <sub>F10</sub>                                                                            | 0.810<br>0.900                                     | Vdc  |
| Minimum Breakdown Voltage $I_R = 100 \ \mu A$                                                               | 1N8021<br>1N8022<br>1N8023                                                                                                                                     | $BV_R$                                                                                                         | 110<br>165<br>220                                  | Vdc  |
| Maximum Reverse Leakage Current (300 $\mu$ s Pulse Minimum , $T_A$ = 25°C)                                  | $\textcircled{Q}$ $V_R = 20V$<br>$\textcircled{Q}$ $V_R = 75V$<br>$\textcircled{Q}$ $V_R = \max \text{ rated}$                                                 | I <sub>R1</sub><br>I <sub>R2</sub><br>I <sub>R3</sub>                                                          | 80<br>120<br>750                                   | nA   |
| Maximum Reverse Leakage Current (300 μs Pulse Minimum , T <sub>A</sub> = 125°C)                             | @ $V_R = 20V$<br>@ $V_R = 75V$<br>@ $V_R = \max \text{ rated}$                                                                                                 | I <sub>R4</sub><br>I <sub>R5</sub><br>I <sub>R6</sub>                                                          | 50<br>75<br>150                                    | μΑ   |
| Maximum Junction Capacitance $(T_A = 25^{\circ}C , f = 1MHz) V_R = 0V$                                      |                                                                                                                                                                | C <sub>J1</sub>                                                                                                | 6                                                  | pf   |
| Maximum Junction Capacitance $(T_A = 25^{\circ}C, f = 1MHz) V_R = 1.5V$                                     |                                                                                                                                                                | C <sub>J2</sub>                                                                                                | 5                                                  | pf   |
| Maximum Junction Capacitance $(T_A = 25^{\circ}C, f = 1MHz) V_R = 10V$                                      |                                                                                                                                                                | C <sub>J3</sub>                                                                                                | 4                                                  | pf   |
| Maximum Reverse Recovery Time ( $I_F = 50 \text{ mA}$ , $I_R = 100 \text{ mA}$ , $I_{RR} = 25 \text{ mA}$ ) |                                                                                                                                                                | t <sub>rr</sub>                                                                                                | 5                                                  | nsec |
| Maximum Forward Recovery Time (I <sub>F</sub> = 50 mA)                                                      |                                                                                                                                                                | t <sub>fr</sub>                                                                                                | 20                                                 | nsec |

|     | AXIAL |       |
|-----|-------|-------|
| DIM | MIN   | MAX   |
| Α   | .056" | .075" |
| В   | .125" | .140" |
| С   | .018" | .022" |
| D   | 1.00" | 1.50" |



| SMS |       |       |  |
|-----|-------|-------|--|
| DIM | MIN   | MAX   |  |
| Α   | .070" | .085" |  |
| В   | .168" | .200" |  |
| С   | .019" | .028" |  |
| D   | .001" |       |  |

